

DAM SAFETY OFFICE 2011/2012 ANNUAL REPORT

ADMINISTRATION OF THE DAM SAFETY
LEGISLATION IN TERMS OF
CHAPTER 12 OF THE NATIONAL WATER ACT,
1998 (ACT № 36 OF 1998)

EXECUTIVE SUMMARY

The **mission** of the Dam Safety Office (DSO) is to promote the safety of new and existing dams with a safety risk so as to reduce the potential harm to the public, damage to property and to resource quality. The work of the DSO is carried out in terms of Chapter 12 of the National Water Act, 1998 (Act No. 36 of 1998). This report covers the activities of the Dam Safety Office for the period 1 April 2011 to 31 March 2012.

A total of 66 dams were registered during the year bringing the **total number of dams registered to date in South Africa to 4 755.** This includes the registration of new dams that were completed during the year, as well as of existing dams that were not registered previously. Some corrections were also made to the database. Altogether 80 registered dams were classified, bringing the total number of existing dams now classified to 4 475, that is 94% of the 4 755 dams registered to date.

Dam safety control over the construction of new dams and alterations to existing dams, involves the evaluation of design and other reports that form part of licence applications. A total of 31 dam safety licences were issued i.e. 12 licences to construct, 9 to alter, 9 licences to impound (commission) and 1 to abandon (decommission).

During the year a total of approximately 698 letters were sent to dam owners to ensure compliance with dam safety legislation. This included a total of 218 dam safety evaluation instructions issued to dam owners. In addition to the 698 letters, a total of 235 applications for approval as Approved Professional Persons for dam safety tasks were processed. The above statistics excludes a total of 94 dam safety inspection reports and a total of 24 operation and maintenance manuals with emergency preparedness plans for dams that were considered and accepted.

To date, 3 283 deficiencies at category 2 and 3 dams have been registered of which 956 (29%) have been rectified so far. Progress with the upgrading of the safety of dams is slow but steady. Personal finances and apathy on the part of some dam owners continue to be the most common stumbling blocks hampering progress with regard to the rectification of deficiencies at dams.

From statistics provided in the report, it is clear that special attention should be focused on the first 100 to 200 dams on the DSO's priority list as they have the greatest potential impact on the public. It is significant that 80% of the first 100 dams on the priority list belong to DWA and Municipalities. Ironically, in the past most incidents associated with loss of life or near misses have been caused by category 2 dams lower down on the priority list, indicating that these dams should not be neglected, even though they are not part of the first 100 to 200 dams. Important recommendations are made in the report in order to maintain and preferably accelerate progress with the dam safety programme.

The total direct expenditure incurred in administration of the dam safety legislation at Head Office was R5 023 000 compared to R4 795 000 in the previous reporting year, i.e. an increase of 5%. This is considered to be a moderate expenditure compared to the benefits of the dam safety programme in South Africa. One of the significant benefits is that not a single new category 2 or 3 dam for which a licence has been issued, has failed since 1987 when the dam safety legislation came in force.

LIST OF CONTENTS

	i	
EXE	ECUTIVE SUMMARY	
	FOF CONTENTS	
LIST	T OF ABBREVIATIONS	
	1. INTRODUCTION	4
	2. ADMINISTRATION	4
	3. DIRECT COST OF DAM SAFETY ADMINISTRATION	6
	5. CLASSIFICATION OF DAMS	8
	6. CONTROL OVER THE CONSTRUCTION & ALTERATIONS OF DAMS	9
	7. CONTROL OVER THE SAFETY OF EXISTING DAMS	.10
	9. UPGRADING OF EXISTING DAMS	.14
	11. REVISION OF THE DAM SAFETY REGULATIONS	.15
	12. PROPOSED REGULATIONS ON FINANCIAL ASSISTANCE	.16
	13. COURSES, LECTURES & SYMPOSIUMS RE DAM SAFETY ENGINEERING	3 16
	APPENDIX B: DEFICIENCIES AT DAMS WITH A SAFETY RISK	.21
	APPENDIX D: PHOTOGRAPHS OF SELECTED DAMS	.41

LIST OF ABBREVIATIONS

AAR alkali-aggregate reaction APP Approved Professional Person

CMA Catchment management agency

DSO Dam Safety Office

DSP Dam Safety Programme
DWA Department of Water Affairs

ECSA Engineering Council of South Africa
EPP Emergency preparedness plan
H Maximum dam wall height in metres

m metre cubic metre

NOC Non-overspill crest

NWA National Water Act, 1998 (Act No. 36 of 1998)

O&M Operation and maintenance

OMM Operation and maintenance manual

R Rand (South African)

RMF Regional maximum flood peak

SANCOLD South African National Committee on Large Dams

V Storage capacity of dam in cubic metres

WARMS Water Authorisation & Registration Management System

WMA Water management area x 10⁶ m³ million cubic metres

This sign means "less than" (e.g. H < 12 m is pronounced as "H is less than 12</p>

metres")

1. INTRODUCTION

This annual report covers the activities of the Dam Safety Office within the Department of Water Affairs with regard to administration of the dam safety legislation in terms of Chapter 12 of the National Water Act, 1998 (Act 36 of 1998) read together with the relevant dam safety regulations, during the financial year 1 April 2011 to 31 March 2012. During the year the old regulations (G.N. R .1560 of 25 July 1986) were replaced by new Dam Safety Regulations promulgated on 24 February 2012 (published in Government Notice R. 139 in English and in Government Notice R. 138 in Sepedi, both dated 24 February 2012). The annual report also serves as an auditing tool. Progress with the dam safety programme can be assessed by comparing the current statistics with those of previous years as well as with targets that were set in the strategic business plan enclosed in Appendix A.

The statistics included in this report reflect the position as for the current nine DWA regions, which are based on river drainage regions that differ from provincial boundaries.

2. ADMINISTRATION

Administration of the dam safety legislation is carried out jointly by the DSO and selected personnel from the regional offices.

The personnel listed below were employed by the Dam Safety Office at Head Office during the reporting year.

- Two Chief/Specialist Engineers
- One Control Engineering Technician (became vacant in December 2011)
- Two Chief Engineering Technicians (one became vacant in October 2011)
- One Deputy Director
- One Assistant Director
- Three Senior Administrative Clerks
- Two Senior Administrative Clerks doing registry clerk duties
- One Senior Administrative Clerk doing data capturing
- One Senior Administrative Clerk doing Logistic duties

The following posts have been vacant for longer than a year:

- One Specialist Engineer
- Three Chief Engineers
- One Engineering Technician
- One Senior Administrative Officer
- One Administrative Officer

The vacant posts impact negatively on the efficiency of the DSO and all vacant posts have been re-advertised and most should be filled in the near future.

During the year a total of approximately 933 letters were compiled by the Dam Safety Administration officials. The statistics in this regard for the past two years are compared in the two Tables below:

Statistics for the previous reporting year (April 2010 – March 2011)

TASK	GA	FS	EC	NW	KZN	LI	MP	WC	NC	Total
Classification of dams (new/proposed)	7	2	18	0	9	2	3	16	0	57
Registration & classification of dams	11	7	37	0	7	3	9	39	0	113
Licence to construct/alter	2	1	1	0	3	2	2	3	1	15
Licence to impound	0	2	0	0	2	0	1	0	0	5
Licence to abandon	0	2	0	0	0	0	0	1	0	3
Dam safety inspection instructions	1	10	21	6	27	4	11	67	1	148
Implementation of recommendations	25	8	7	1	15	3	11	24	0	94
Approval of app's & prof teams (adm)	33	8	21	0	22	11	19	41	0	155
Approval of app's & prof teams (referred to										
ECSA for recommendation)	5	0	5	0	5	1	2	1	0	19
General letters and reminders/warnings	25	14	36	0	29	17	12	29	1	163
Legal Actions	0	0	0	0	0	0	0	0	0	0
Directives	0	0	0	0	0	0	0	0	0	0
Exemptions	0	0	0	0	0	0	0	0	0	0
Declarations of a dam with a safety risk	0	0	0	0	0	0	0	0	0	0
Dams not a safety risk "by definition"	1	0	1	1	1	0	0	3	0	7
Letters in connection with subsidies	0	0	0	0	0	0	0	0	0	0
Letters re inspection, investigation	19	63	52	2	109	23	58	36	1	363
Letters re licences to construct (design										
issues)	0	0	0	0	0	0	0	0	0	0
Miscellaneous letters (DSO)	0	0	0	0	0	0	0	0	0	0
No of Title Deeds searches	0	0	4	0	1	2	0	7	0	14
Total for Period	129	117	203	10	230	68	128	267	4	1156

Statistics for the reporting year (April 2011 – March 2012)

TASK	GA	FS	EC	NW	KZ	LI	MP	WC	NC	Total
Classification of dams (new/proposed)	2	1	3	0	3	1	8	8	0	26
Registration & classification of dams	8	5	12	1	1	1	7	24	1	60
Licence to construct/alter	2	1	5	0	1	2	2	7	0	20
Licence to impound	3	1	0	0	1	0	1	0	0	6
Licence to abandon	0	1	0	0	0	0	0	0	0	1
Dam safety evaluation instructions	31	14	39	0	11	5	11	99	8	218
Implementation of recommendations	16	2	5	0	1	0	4	11	1	40
Approval of app's & prof teams (admin)										222
Approval of app's & prof teams (referred to ECSA for recommendation)										13
General letters and reminders/warnings	7	5	3	0	8	5	5	14	1	48
Legal Actions	0	0	0	0	0	0	0	0	0	0
Directives	0	0	0	0	0	0	0	0	0	0
Exemptions	0	0	0	0	0	0	0	0	0	0
Declarations of a dam with a safety risk	0	0	0	0	0	0	0	0	0	0
Dams not a safety risk "by definition"	2	4	2	0	0	0	4	2	0	14
Letters in connection with subsidies	0	0	0	0	0	0	0	0	0	0
Letters re inspection, investigation	36	46	45	0	42	0	20	74	2	265
Letters re licences to construct (design issues)	0	0	0	0	0	0	0	0	0	0
Miscellaneous letters (DSO)	0	0	0	0	0	0	0	0	0	0
No of Title Deeds searches	0	0	0	0	0	0	0	0	0	0
Total for Period	107	80	114	1	68	14	62	239	13	933

3. DIRECT COST OF DAM SAFETY ADMINISTRATION

The direct expenditure incurred in administration of the legislation at Head Office is shown in Table 1 below.

Table 1: DSO Direct expenditure

Item	Expenditure (R'000)					
itein	2010/11	2011/12				
Employee component	4110	4352				
Goods & Services	649	639				
Transfers	0	0				
Machinery	36	40				
Grand Totals	4 795	5 023				

The total direct expenditure was R5 023 000 compared to R4 795 000 in the previous year, i.e. an increase of 5%.

Indirect costs (i.e. expenditure incurred by regional offices that assist the DSO and Head Office overhead cost) are not included in these amounts.

4. REGISTRATION OF DAMS

In terms of Section 120 of the NWA, all dams with a safety risk (i.e. if the wall height exceeds 5,0 m and if the storage capacity exceeds 50 000 m³) must be registered by dam owners. A total of 66 dams were registered during the year bringing the total number of dams registered to date in South Africa to 4 755. The figure of 66 includes registration of new dams that were completed during the year, as well as of existing dams that were not registered previously. Some corrections were also made to the database. The progress with registration of dams is illustrated in figure 1.

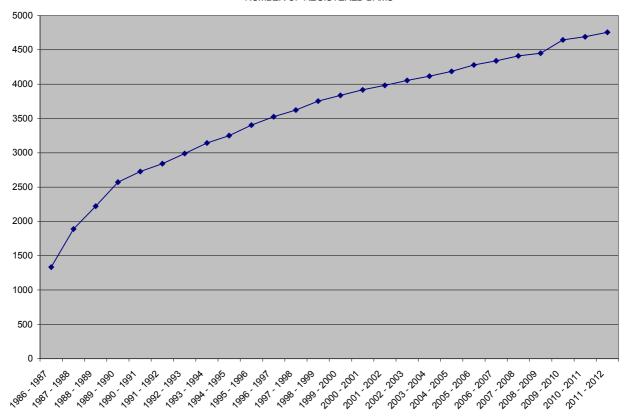


Figure 1: Progress with registration of dams

Distribution of registered dams according to size class, reservoir capacity and regional location is given in Tables 2 to 4.

Table 2: Distribution of registered dams according to size class

Size class	Number	%
Small (less than 12 m)	3 517	74%
Medium (12 m – 30 m)	1 059	22%
Large (30 m and higher)	179	4%
Total	4 755	100

Table 3: Distribution of registered dams according to reservoir storage capacity

Capacity (x 10 ⁶ m ³)	Number	%
0,00 – 0,05	152	3.1%
0,05 – 0,10	1 181	24.8%
0,10 – 0,25	1 710	36%
0,25 – 1,00	1 078	22.7%
1,00 – 10,00	437	9.2%
10,00 – 100,00	129	2.7%
100 – 1 000	60	1.3%
1 000 – 10 000	8	0.2%
Total	4 755	100

Table 4: Regional distribution of registered dams with a safety risk

Region	Total No. registered to date	%
Eastern Cape	685	14%
Free State	402	8%
Gauteng	329	7%
Northwest	151	3%
KwaZulu-Natal	929	20%
Limpopo	317	7%
Mpumalanga	495	10%
Northern Cape	82	2%
Western Cape	1 366	29%
Total	4 755	100%

5. CLASSIFICATION OF DAMS

Altogether 80 registered dams were classified, bringing the total number of registered existing dams now classified to 4 475, which is 94,1% of the 4 755 dams registered to date. In addition, about 14 proposed dams were also classified.

Progress with the classification of registered dams in the regions is given in Table 5.

Table 5: Progress with classification of dams on a regional office basis

Region	Total No. registered to date	Total No. classified to date	% Classified to date	Number not classified yet
Eastern Cape	685	653	95%	32
Free State	402	358	89%	44
Gauteng	329	303	92%	26
Northwest	151	137	91%	14
KwaZulu-Natal	929	918	99%	11
Limpopo	317	300	95%	17
Mpumalanga	495	454	92%	41
Northern Cape	82	68	83%	14
Western Cape	1366	1284	94%	82
Total	4 755	4 475	94,1%	281

From Table 5 it can be seen that KZN has classified 99% of their registered dams. The percentage classified for the country as a whole increased to 94% due to the 80 dams that were classified during the year. The Dam Safety Office currently has 2 technicians who spend about 40% of their time on classifications. It will take about 4 years to classify most of the unclassified registered dams on the list if the current rate of 80 classifications per year can be maintained.

It should be noted that the outstanding classifications generally represent small dams and their hazard potential would mostly be low.

The distribution of existing dams classified according to hazard potential rating and category classification is given in tables 6 and 7.

Table 6: Classification of existing dams according to size class and hazard potential

Size class	Haz	Total		
	Low Significant		High	
Small	2 518 (56%)	795 (18 %)	37 (1%)	3 350 (75%)
Medium	257 (6%)	577 (13%)	127 (3%)	961 (21%)
Large	1 (0%)	21 (0%)	142 (3%)	164 (4%)
Total	2 776 (62%)	1 393 (31%)	306 (7%)	4 475 (100%)

Table 7: Category classification of existing dams

Category classification	Number of dams	%
Category 1*	2 518	56 %
Category 2	1 666	37 %
Category 3	291	7%
Total	4 475	100 %

^{* 34} of these dams are actually medium size dams that have been classified as indicated below, in terms of regulation 3.2 of the old dam safety regulations.

Size class : Medium
Hazard potential rating : Low
Category classification : 1

6. CONTROL OVER THE CONSTRUCTION & ALTERATIONS OF DAMS

Table 8: Licences issued by DSO

Category	Licence to construct	Licence to Alter	Licence to impound	Licence to Abandon	Total
1	1	1	0	0	2
2	10	6	8	1	25
3	1	2	1		4
Total	12	9	9	1	31

Dam safety control over the construction of new dams, including alterations to existing dams, involves the evaluation of design and other reports that form part of a licence application. A total of 31 dam safety licences were issued, i.e. 12 licences to construct, 9 to alter, 9 to impound and 1 to abandon (decommission).

Provision has been made for inspections by personnel of the regional offices during construction of category I and II dams, but very little success has been achieved in most of the regions because of the lack of human resources.

6.1 Site visits to dams

Response from APPs with regard to the submission of reports after site visits during construction work at dams varied from very good to fair.

The DSO made a total of 83 visits to dams during the year. Of these, 13 were to dams under construction whilst the remaining 70 were to existing dams, including for classification purposes. Where possible, contact was made with APPs to discuss design issues, general problems and quality control. A special effort was made to discuss dam safety engineering issues with owners, importance of operation and maintenance (including contingency plans), as well as the dam safety legislation requirements.

6.2 Evasion of the dam safety legislation

Several cases of dams having been built without a licence to construct are being handled by the Directorate Compliance Monitoring & Enforcement for possible prosecution. In the majority of cases the DSO and regions only find out when construction is near completion (or completed), and it is not always possible to stop construction at an early stage.

7. CONTROL OVER THE SAFETY OF EXISTING DAMS

7.1 Progress with the five-yearly inspections

The following table show the status of the dams with respect to the number of inspections performed to date for Category 2 and 3 dams:

Table 9: Progress with 5-yearly inspections of Category 2 and 3 dams

Sector	DWA	Muni- cipal	Industry Mines Business	Other State Dams	Water Boards	Agri cultural	Total
Total number of Cat 2 & 3							
dams	275	257	194	34	42	1 155	1957
Required number of							
inspections per year (7,5 year							
interval)	37	34	26	5	6	154	262
Actual number of inspections							
received this year	37	15	13	5	1	51	122
Outstanding first inspections	18	35	63	5	2	380	503
Total number of inspections							
done since 1987	654	413	260	49	56	1 046	2 478
Average inspection interval	10	14	17	16	17	25	18
based on row above	years	years	years	years	years	years	years

The analysis shows that there are a large number of dam owners who are not complying with the target inspection intervals of between 5 and 10 years (average 7,5 years) between inspections. In addition a large number of Category 2 and 3 dams have not been inspected yet. The Table shows that DWA's (Infrastructure Branch) performance has been the most consistent since 1987, when the dam safety legislation came in force.

All the other Sectors perform unsatisfactorily. The poor performance of the Municipal Sector is of particular concern as their dams are in many cases located close to densely populated areas. In the case of the Industry/Mine Sector, it should be mentioned that in terms of the new dam safety regulations promulgated in February 2012, pollution control dams with a

safety risk are now automatically classified as category 2, which impacted negatively on this Sector's statistics for this reporting year.

The flow of dam safety inspection reports through the directorate during the reporting year was as follows (statistics of previous year are indicated in brackets):

Table 10: Flow of dam safety evaluations

	Number
Dam Safety Inspection Instructions Issued	203 (151)
Dam Safety Inspection Reports Received	123 (150)
Dam Safety Inspection Reports Accepted	94 (115)
Reports received but not evaluated or accepted at end of	127 (98)
reporting period	

Presently there are 1957 category II and III dams in the country and these dams should be inspected at an average interval of about 7,5 years. To achieve this, the ideal target should be set at 261 inspections submitted and accepted per year. The actual target for instructions is set at 225 per year as DWA dams are excluded. Instructions are currently not issued for dams under control of the DWA Infrastructure Branch because they follow a programme accepted by the DSO. Their dams are however included in the number of reports received and accepted.

The current capacity of the Dam Safety Office to evaluate and accept these reports is limited and only 94 were accepted and the year ended with a backlog of 127 reports that must still be finalised. More technical capacity is therefore essential.

7.2 Progress with rectification of deficiencies at category II and III dams

The deficiencies listed in Table 11 have been registered on the DSO database with regard to dams for which dam safety inspection reports have been formally accepted since implementation of the dam safety legislation in 1987.

Table 11: Deficiencies/shortcomings at dams

Description	Number of deficiencies	Number rectified
Hydraulic Problems	731	163
Leakage Problems	230	63
Structural Problems	274	78
Material Problems	37	8
Operation And Maintenance Problems	1 986	639
Other Problems	25	5
TOTAL	3 283	956

A total of 3 283 deficiencies have been registered of which 956 (29%) have been rectified since 1986. Rectification of a deficiency can also means that a subsequent investigation into the matter proved that a deficiency previously recorded is no longer considered a problem because of better information. A more detailed breakdown of the deficiencies is included in Appendix B.

A total of 24 operation and maintenance manuals (OMM) including emergency preparedness plans (EPP) were formally accepted during the financial year. Approximately 996 dams now have both a OMM and EPP.

As in previous years much time and effort were spent on visiting owners, discussing shortcomings requiring rectification and associated problems. It is again reported that limited success has been achieved and where progress has been made, much personal input has been required. This is only possible for selected (more important) case studies. Financial circumstances and the state of the economy are still the most common "stumbling blocks". Nevertheless, some dam owners have put a lot of effort into the upgrading and maintenance of their dams.

The Dam Safety Office tries to follow up in writing (ideally every 6 months) all cases where instructions have been issued and where important recommendations of 5 yearly dam safety evaluation reports have not been implemented. This objective has however not been achieved in all cases due to the shortage of technical and administrative staff. A total of 620 follow-up letters were compiled in this regard.

7.3 Prioritisation of existing dams

Updating of the priority list of dams is an ongoing activity and takes place after receipt of dam safety evaluation reports, compiled by APPs. The total number of dams on the full list has increased from 1 327 (2010/11) to 1 334 (2011/12). The goal is to eventually reflect all category II and III dams (private as well as State dams) on the list. The list of the first 100 dams (thus including the most important outstanding dam safety work in South Africa) is appended in Appendix C. A simplified risk-based assessment is done to determine the relative risk and ranking of a dam on the list, based on information provided in dam safety inspection reports. The relative risk is based on the "possible loss of life during the life-span of a dam" (assumed as 100 years on average) and is calculated by using the following parameters:

- The estimated probability of failure of a dam (failure probabilities due to different causes at one dam are combined by using e g de Morgan's rule to prevent double-counting).
- The consequences of such a failure (hazard potential in terms of loss of life during a worst case scenario).
- A reduction factor determined from the standard of operation, maintenance, monitoring programme, emergency preparedness and general condition of a dam.

The priority list serves as a management tool for the DSO to:

- Identify priorities for the DSO.
- Determine appropriate inspection frequencies for dams. The proposed frequency as indicated in the last column of the list in Appendix C is one of the parameters used for the determination of intervals (years) between inspections.
- Monitor progress with the dam safety programme e.g. by comparing the total expected loss of life for all dams on the list or just for the first 50 dams on an annual basis.

It was found that the total relative risk or "possible loss of life" for all dams on the list increased by 5,6% from 4 896 (2010/11) to 5 170 (2011/12), as a result of new entries to the list and due to different assessments of risks in new dam safety evaluation reports. The total "possible loss of life" for the first 50 dams on the list increased by 6,4% from 3 440 (2010/11) to 3 662 (2011/12), due to the same reasons as given above. It should also be noted that there is a time lag before recent betterment work is reflected on the priority list, as the list is only updated after receipt of the next dam safety evaluation report following completion of rehabilitation work. Thus the list is not yet adequately "stable" and responsive

to be used as an accurate short term monitoring tool to measure progress with the dam safety programme. Nevertheless, some useful information can be extracted from the priority list as shown in the following paragraphs.

The information and statistics in Table 12 and in Appendices A, C2 and C3 have been corrected to take recently completed rehabilitation work into account. Table 12 shows the two main shortcomings under the first 100 dams on the priority list that require urgent attention. The relevant dams are listed in Appendices 2 and 3.

Table 12: Main shortcomings under the first 100 dams on priority list

Shortcoming (not complying with basic safety standards)*	No. of dams
Deficient flood handling capacity	25
Deficient structural stability	19
Total number of dams not complying with basic safety standards	45

^{*}For the purposes of this Table, "compliance with basic safety standards" means the probability of failure of a dam is estimated to be less than 0,05% (1/2000) or 0,5% (1/200) per year for category 3 and 2 dams respectively.

An aspect that must be borne in mind is that some dams appear high on the list on the basis of their massive size and high theoretical hazard potential. Although no betterment work may be required at these dams because they comply with appropriate dam safety standards, it is important that adequate maintenance, monitoring, emergency preparedness and security measures are in place at these dams. These dams have been removed from the lists provided in Appendices C2 and C3 in order to highlight shortcomings at dams that need to be addressed in the short term.

Table 13 shows that 80% of the top 100 dams on the priority list belong to DWA and the Municipalities. Most of the large dams in the country fall within these two sectors.

Table 13: Number of dams per sector within first 100 dams as ranked on priority list

Sector	Total number of registered category 2	Number of dams within first 100 dams as ranked on
	and 3 dams	priority list
DWA Dams	275	58
Municipal Dams	257	22
Other State Dams	34	2
Water Board Dams	42	2
Mines, Industries, Business	194	4
Agricultural Dams	1 155	12
TOTAL	1 957	100

The following useful information has been extracted from the priority list:

• Of the total "possible loss of life" for all dams on the list (5 170), approximately 79% is caused by the first 100 dams or 87% by the first 200 dams. It is clear that special attention should be given to the first 100 to 200 dams on the priority list as they have the greatest potential impact on the public. Ironically, in the past most incidents associated with loss of life or near misses have been caused by category 2 dams lower down on the priority list, indicating that these dams should not be neglected, even though they are not part of the first 100 to 200 priority dams.

- 80% of the top 100 dams on the priority list belong to DWA and the Municipalities as shown in Table 13. It should be possible for these major dam owners to obtain and budget adequate funds to upgrade and/or maintain these dams in pristine condition
- The most important shortcomings at dams that need to be addressed in the short term are listed in Appendices C2 and C3, the latter showing DWA dams only. There are 18 dams on the latter list, of which 12 dams are already in the planning, tender, design or construction phase.
- The priority list also serves as a tool to help assess the current state of dam safety in South Africa and this is summarised under item 5 of the strategic business plan in Appendix A. It is clear that a lot of work must still be done by several role players to bring the state of dam safety in South Africa to satisfactory levels. The current rate of dam safety betterment work in South Africa is slow but steady. As reflected in Table 14, the current rehabilitation programme by DWA is making an important contribution in this regard.

7.4 Legal/criminal proceedings

Several cases of dams having been built without a licence to construct are being handled by the Directorate Compliance Monitoring & Enforcement (CME) for possible prosecution.

8. APPROVAL OF PROFESSIONAL PERSONS FOR TASKS

A total of 235 applications for approval were received during the year. Of these 13 applications were submitted to the Engineering Council of South Africa (ECSA) and handled by its Committee on Professional Engineers for Dams. ECSA recommended 12 unconditional approvals and 1 conditional approval.

The 222 other applications were processed on the strength of similar previous recommended approvals by ECSA and they were not again referred to ECSA for a recommendation.

To date 156 persons have been approved as APPs for dam "tasks". A total of about 76 APPs are classified as still active, i.e. not emigrated, retired or deceased and approved for at least 1 task during the past 5 years.

9. UPGRADING OF EXISTING DAMS

The major rehabilitation programme by the DWA: Infrastructure Branch is continuing to make a significant contribution to upgrade the safety of existing dams and must be commended. Total annual expenditure during the last four years varied between R241 million and R384 million. **Table 14** provide some statistics in this regard.

Table 14: Upgrading of safety of existing DWA dams

Description	Number of dams
Dams rehabilitated in full during last 7 years	19
Dams rehabilitated in full with regard to civil works, but mechanical refurbishment outstanding	11
Dams in tender, design or construction stage	39

10. INCIDENTS AT DAMS

The DSO has started with the upkeep of an incident database which will be pasted on the DSO webpage. This list provides valuable statistics and details of dam incidents that have occurred in South Africa. From the list the major causes of dam failures are:

- Inadequate spillway capacity (41%)
- Piping through earthfill walls (21%)
- Failure through erosion of spillways and outflanking of weirs (17%)

The following significant incidents at dams during 2011/12 were reported to the DSO:

Table 15: Incidents at Dams

NAME OF DAM (TYPE)	LOCALITY AND NUMBER OF DAM	HEIGHT (m)	CAPACITY ('000 m³)	CAT	INCIDENT OR DAMAGE
Klaserie (earthfill)	Hoedspruit B700/09	20	6 000	3	Damage when spillway training wall was overtopped during floods in January 2012. Dam wall toe was undermined.
Lake Panic No 1 (earthfill)	Skukuza Town, Kruger National Park	7	54	I	Failed by overtopping in January 2012 after heavy rains. The spillway was partially obstructed by a crossing built for golf carts.
	The dams below have concrete weirs or buttress spillways in the river section with earthfill flank walls at one or both side. They are located in the Timbavati and Nharalumi River Areas adjacent (west) to Kruger National Park				
Argyle	B706/27	9	220	I	-
Victor Wilkens (or Peru)	B706/28	7	270	I	
Sobeli	B706/29	7	260	I	These dams failed or partially failed by overtopping of the earthfill flank walls
Argyle No 2	B706/30	7	165	I	in January 2012 after heavy rains in Eastern Mpumalanga including the
Jaydee	B706/31	7	204	I	Hoedspruit area
Ndlophu	B706/32	7	105	I	

11. REVISION OF THE DAM SAFETY REGULATIONS

In terms of section 123(1) of the NWA the old regulations (G.N. R .1560 of 25 July 1986) were replaced by new Dam Safety Regulations that were promulgated on 24 February 2012 (published in Government Notice R. 139 in English and in Government Notice R. 138 in Sepedi, both dated 24 February 2012).

The following are the main benefits of the new regulations compared to the old regulations:

• Better aligned with the terminology and especially with the objectives of the National Water Act of 1998 (Act 36 of 1998), e.g. raising the hazard potential rating of pollution control dams to at least significant, which is in the interest of protection of water resource quality.

- Provision for the establishment of a register of approved professional persons for tasks at dams with a safety risk (section 123(1)(a) of the NWA). This should reduce the administrative burden of considering applications and writing letters for each and every task at dams.
- The requirements for category 1 dams have been raised, especially with regard to spillway capacity. Inadequate spillway capacity is the main cause of dam failures.
- Experience gained since 1987 (when the old regulations came in force) has been implemented to make the new regulations more effective.

12. PROPOSED REGULATIONS ON FINANCIAL ASSISTANCE

Until 1 October 1998, subsidies were paid out for dam safety related work in accordance with conditions published in Government Notice No. 1854 dated 10 August 1990 (hereafter G.N. 1854), which were published in terms of section 9C (9A) of the previous Water Act, 1956. The National Water Act, 1998, came into effect on 1 October 1998. Since 1 October 1998, new subsidy applications could not be considered, as the previous subsidy conditions were not compatible with the new set of criteria specified in section 61 of the NWA.

The objective of the proposed financial assistance scheme would be to help dam owners who cannot afford it, to comply with requirements of the dam safety legislation to execute tasks such as dam safety evaluations, dam safety investigations and dam safety betterment work in order to upgrade the safety of category II and III dams to appropriate standards. It would only be practically possible to embark on this task once the technical capacity of the DSO has been strengthened.

13. COURSES, LECTURES & SYMPOSIUMS RE DAM SAFETY ENGINEERING

Event attended	Institution	Number of officials	Date
Design & management of dams and hydraulic structures (and presented lecture)	University of Stellenbosch	4	20-22 July 2011
Dam management & rehabilitation (and presented lectures)	Intelligent transfer	4	28-29 July 2011
Management & design of dams (and presented lectures)	SANCOLD	2	8 to 10 Nov 2011
Flood hydrology and climate change (and presented lecture)	University of Pretoria	2	31 Jan to 2 Feb 2012

14. CONCLUSIONS AND RECOMMENDATIONS

A summary of the current state of dam safety in South Africa is given in the strategic business plan for the dam safety programme (DSP), attached as Appendix A. This strategic business plan also gives an indication of progress made since commencement with the DSP in 1987. In addition, recommendations to achieve the objectives of DSP by different key role players (not only the DSO) are included in the last column. The salient points of the current state of dam safety in South Africa are as follows:

- It is expected that most category 2 and 3 dams have been registered, but there may still
 be a significant number of category 1 dams that have not been registered. Steps to
 improve on this statistic are proposed in the business plan. The DSO has started to use
 the WARMS database to identify unregistered dams. At the current rate, 99% of all
 registered dams should be classified by 2015 compared to the current 94%.
- Most new category 2 and 3 dams with a safety risk are being built in accordance with appropriate safety standards. Proposed steps to further improve on the quality of design and construction include training of the important role players. SANCOLD through its annual courses and/or conferences is assisting in this regard.
- Of the total of 1 957 category 2 and 3 dams, 1 462 (75%) dams have already undergone the first round of inspections by approved professional persons/engineers. Most of the larger and more important dams have been inspected. Steps to ensure that all category 2 and 3 dams are inspected at regular intervals are proposed in the business plan.
- It is a requirement of the new dam safety regulations that all category 2 and 3 dam owners must have an O&M manual and emergency preparedness plan compiled by an APP when so instructed by the Director-General. At present only about 51% of these dam owners comply with this objective. In the business plan steps to improve the standard of O&M at all dams with a safety risk are proposed.
- Only an estimated 50% of the first 400 category II and III dams on the priority list comply with basic dam safety standards. Steps to improve this situation are proposed in the business plan. Upgrading of the non-complying dams to appropriate safety standards remains a long-term task (until 2020 or later) and provisional targets are set on a prioritised basis in the business plan.
- It is clear that a lot of work must still be done by several role players to bring the state of dam safety in South Africa to satisfactory levels. The current rate of dam safety betterment work is slow but steady. The rehabilitation programme by DWA for DWA dams (see Table 14) is making an important contribution in this regard.
- Of the total "possible loss of life" for all dams on the list (5 170), approximately 79% is due to the first 100 dams or 87% due to the first 200 dams. It is clear that special attention should be focused on the first 100 to 200 dams on the priority list as they have the greatest potential impact on the public. Ironically, in the past most incidents associated with loss of life or near misses have been caused by category 2 dams lower down on the priority list, indicating that these dams should not be neglected.
- 80% of the top 100 dams on the priority list belong to DWA and the Municipalities as shown in Table 13. It should be possible for these major dam owners to obtain and budget adequate funds to upgrade and/or maintain these dams in pristine condition
- The most important shortcomings under the first 100 dams that need to be addressed in the short term are listed in Appendix C2 (and of DWA dams only in Appendix C3).
- The total direct expenditure incurred in administration of the dam safety legislation at Head Office was R5 023 000 compared to R4 795 000 in the previous reporting year, i.e. an increase of 5%. Because of the small size of the DSO, expenditure is very sensitive to personnel fluctuations. It is believed that the benefits of the dam safety programme far outweigh the total direct expenditure.

The following specific recommendations are made in order to maintain and preferably accelerate progress with the dam safety programme:

- The technical personnel component within the DSO should be strengthened. Significant momentum was lost when one Chief Engineer resigned 4 years ago. The DSO has also been unable to fill three vacant Chief Engineer posts over a long period of time.
- A financial assistance scheme should be implemented as soon as the technical personnel component within the DSO has been strengthened. Previously it was found that financial assistance acted as a moderate incentive for dam owners to implement dam safety betterment work. Dam safety is considered to be in public interest.
- A detailed action plan to achieve the objectives of the dam safety programme is proposed in the last column of the strategic business plan in Appendix A.

APPENDIX A: STRATEGIC BUSINESS PLAN FOR DAM SAFETY PROGRAM

Vision: That all dams with a safety risk shall comply with appropriate safety standards in order to minimize loss of life, damage to property and harm to the environment.

Responsibilities: The success of the dam safety programme depends on action by several role players: Firstly dam **owners** (including Infrastructure Branch within DWA [**DWA-IB**]), secondly various other components within DWA (Dam Safety Office [**DSO**], Regional Offices [**RO**], Legal Services [**LS**]), Compliance Monitoring & Enforcement (**CME**), thirdly Disaster Management Structures [**DM**] and also SANCOLD.

Key Performance Area / Objectives	Short Term Targets	Current Status*	Possible Plan of Action to Attain Objectives (+Responsible Role Player)
That all dams* are registered and classified.	 99% dams* registered by 2015. 99% of reg. dams classified by 2015. 	 4755 (±95% -estimate) 4475 (94,1% of 4755) 	 Register dams from WARMS database plus advertising campaign. (RO) Check by Google-Earth (RO, DSO) Obtain services of consultants to assist some Regional Offices. (RO) Introduce fines to owners? (LS/CME)
2. That all new dams* are designed/ built / altered in accordance with appropriate standards.	95% by 2015 (measurement of quality of construction subjective, especially of Cat I dams)	±95% for cat 2&3 (estimate allows for deficient quality of illegal dams) ±50% for cat 1 dams	 Prevent illegal construction by e.g. air and road reconnaissance. (RO) Introduce fines? (LS/CME) Training courses for APPs/contractors/clerks of works? (DSO, SANCOLD) Improve control over cat I dams. (RO, DSO)
3. That all Cat II & III dams are inspected and evaluated by APPs* according to schedule and to current dam engineering standards.	1550 1st inspections by 2015. Then 2 nd and 3 rd inspections to follow at required intervals.	1 st 1462 2 nd 670 3 rd 278 inspection reports received so far.	 Accelerate instructions. (DSO) Improve system of reminders, warnings, legal action, etc. (DSO, CME) Implement financial assistance scheme. (DSO, DWA) Inspection of some DWA dams should be contracted out. (DWAF-IB) Training of APPs (SANCOLD, DSO)
4. That all dams* are operated & maintained in accordance with appropriate safety standards and that effective OMMs* and EPPs* are in place.	1100 OMMs & EPPs compiled for Cat II and III by 2015. Standard OMM & EPP issued for all Cat I dams by 2015.	996 OMMs with EPPs compiled for Cat II and III dams so far.	 Improve system of instructions, reminders, warnings, etc. (DSO, CME) Ensure that all Cat II and III dams have OMMs & EPPs. (DSO + owners) Compile a standard OMM & EPP for Cat I dams and issue. (DSO) Motivate dam owners to keep up O&M by two-yearly circulars. (DSO) Implement Disaster Management Act. (DM)
5. That all dams* shall comply with appropriate safety standards (e.g. SANCOLD guidelines). Where necessary, dams must be upgraded to acceptable standards.	According to order of priority list: 1st 100 dams 80% by 2020 2nd 100 dams 70% by 2020 3rd 100 dams 70% by 2020 4th 100 dams 70% by 2020 4th 100 dams 70% by 2020 80% of all Cat II & III dams by 2030	Basic* compliance: 1st 100 dams 55% 2nd 100 dams 44% 3rd 100 dams 42% 4th 100 dams 60%	 Upgrade dams on prioritized basis. Focus on first 100-200 dams on priority list. (Owners, DSO) Improve system of reminders, warnings, legal action, etc. (DSO, CME) Implement financial assistance scheme. (DSO, DWA) Training courses for APPs/contractors/clerks of works? (APPs, DSO, SANCOLD) Give special attention to high priority cases & monitor progress (DSO) Budget R400 M+ per year for DWA dams. (DWAF-IB)

^{*}Notes: **APP** means approved professional person. **Basic compliance** means the probability of failure of a dam is estimated to be less than 0,05% (1/2000) and 0,5% (1/2000) per year for category 3 and 2 dams

respectively. Dams in this Table mean dams with a safety risk. EPP means emergency preparedness plan. OMM means O&M manual. Current status is the status as on 31 March 2012.

APPENDIX B: DEFICIENCIES AT DAMS WITH A SAFETY RISK

			ous year	This Year	
Code	Description	Number	Rectified	Number	Rectified
H01	Spillway capacity less than requirements of current criteria	442	86	456	94
H02	Erosion of toe of dam or downstream thereof	46	8	46	8
H03	Damage to spillway lining (e.g. erosion or cavitation	81	22	80	22
H04	Damage to outlet works (e.g. cavitation)	16	4	15	4
H05	Mechanical equipment or outlet works out of order	42	10	42	10
H06	Spillway or gate vibration	2	1	2	1
H08	Erosion due to wave action (damage to upstream slope protection)	68	15	67	15
H09	Inadequate surface drainage or damage by "rainfall" erosion	22	8	22	8
H11	Hazard to human life upstream of dam during floods ("backwater" effects also)	1	1	1	1
	HYDRAULIC PROBLEMS	720	155	731	163
L01	Excessive loss of water	127	30	133	31
L02	High pore pressures, uplift forces, blocked drains	30	7	30	8
L03	Internal erosion, piping	19	2	20	3
L04	Wet patches observed	46	20	47	21
	LEAKAGE PROBLEMS	223	59	230	63
S01	Stability (gravity and buttress dams)	62	19	63	18
S02	Slope stability (earth and rockfill dams)	76	18	76	19
S03	Structural design criteria exceeded (arch dams)	10	3	10	3
S04	Foundation movement observed	3		3	
S05	Upstream "slip circle movement" observed	2	1	2	1
S06	Downstream "slip circle movement" observed	13	3	13	4
S07	"Flow slide" observed	3	1	3	1
S09	Excessive cracking or differential movement observed in mass concrete	15	4	15	4
S10	Excessive settlement of earth or rockfill dams	78	23	77	23
S11	Formation and development of cracks in earth dams	11	4	12	5
	STRUCTURAL PROBLEMS	273	76	274	78
M01	Weakening of concrete due to alkali-aggregate reaction or swelling/shrinking aggregate	18	4	18	4
M02	Chemical attack, leaching, weathering, bacteriological attack	4	1	4	1
M03	Break up of upstream membrane	1		1	
M06	"Foundation/ abutment material breakdown"(chemical)	1	1	1	1
M07	Corrosion (mechanical equipment)	4	1	4	1
M09	Dispersive soils identified	8	1	8	1
M11	Crumbling/weathering/slaking of rock	1		1	
	MATERIAL PROBLEMS	37		37	8

	APPENDIX B (continued)		ous year	This	Year
Code	Description	Number	Rectified	Number	Rectified
B01	Flood control: Lack of personnel, untrained personnel	3		3	
B02	Operation and Maintenance Manual (OMM) must be compiled / updated	1 152	413	1 156	423
B03	Deficiencies in monitoring (instrumentation)	69	24	68	24
B04	Deficiencies in monitoring (routine inspections)	6	3	6	3
B05	Emergency Preparedness Plan (EPP) must be compiled / updated	390	53	421	63
B07	Trees and vegetation that must be removed	204	82	204	86
B08	Burrowing animals that must be exterminated	70	21	69	21
B09	Instruments not read/processed/evaluated	2		2	
B10	Flood control gates out of order	7	4	8	4
B11	Outlet works out of order	24	5	24	5
B12	Maintenance of slope protection	24	9	23	10
B13	Increase non overspill crest width			1	
B14	Inadequate freeboard	1		1	
	OPERATION AND MAINTENANCE PROBLEMS	1 953	614	1 986	639
A01	Sabotage	2		2	
A02	Earthquake Damage	2	1	2	1
A04	Problems in dam basin (unstable slopes			1	
A05	Problems in the river downstream of a dam	1		1	
A06	Further investigations required	19	4	19	4
	OTHER PROBLEMS	25	5	25	5
	TOTAL	3 231	917	3 283	956

APPENDIX C: PRIORITY LIST OF DAM SAFETY OFFICE

APPENDIX C1: First 100 dams on list (10 pages)

Upon receipt of dam safety evaluation reports on category 2 and 3 dams, a basic risk assessment is done and the priority of a dam is determined on the basis of its "possible loss of life during the lifespan of the dam", taken as 100 years. There is a time lag before the list is updated after completion of dam safety betterment work, as the dam safety evaluation is done 3-5 years thereafter. There are currently 1 334 dams on the full list.

APPENDIX C2: Dams under first 100 on the list needing urgent attention (45 dams)

As Appendix C1 but without dams that have been rehabilitated recently and without dams that are considered to comply with basic safety standards (annual probability of failure less than 1/200 for category 2 dams and less than 1/2000 for category 3 dams). Some dams in Appendix C1 appear high on the list because of their massive size and high theoretical hazard potential although they comply with appropriate safety standards. These dams have been omitted in Appendix C2. **Dams on this list should receive urgent attention because their annual probability of failure is considered to be too high.**

APPENDIX C3: As Appendix C2 but only for DWA dams (18 dams)

Of the 18 dams on this list, 12 dams are already in the planning, tender, design or construction phase for upgrading work.

LEGEND FOR PRIORITY LIST:

PF	Probability of failure during lifespan of dam
LL	Hazard potential in terms of loss of life
EL	Possible loss of life during lifespan of dam based on worst case scenario
	(e.g. failure during night and slow evacuation)
AL	Reduction factor for good O&MM and EPP
N	Lifespan of dam (100 years)
Т	Average "recurrence period (years) between failures"
1/T	Annual probability of failure
EPP	Emergency preparedness plan
Sector	A (Agriculture), M (Municipal), W (DWA), S (State departments
	excluding DWA), O (Industry, Mines, Business)

<u>The following guideline is used to determine intervals between dam safety evaluations (shown in the last column of Appendix C):</u>

EL	Intervals between dam safety evaluations		
	(years)		
<0,5	10		
0,5 to 2	9		
2 to 10	8		
10 to 20	7		
20 to 50	6		
>50	5		

APPENDIX C1

	_												<u> </u>	
No.	S	ector	Loc. No.		Name of dam	Cate	gory					EPP		DSI Interval
	Major risk aspe	ect		Action to be ta	ken		T(years)	PF	LL	AL	EL(total)	(Y/N)	Status/Progress	(years)
1		М	N120/01		NQWEBA DAM (PREVIOUSL	n 3						Υ		5
	Spillway			*Investigate further			100	0.634	10	0.5	634.0		Programmed for 2007/8	
	Structure			*Investigate further	and improve		100	0.634	2000	0.5			Programmed for 2007/8	
	EPP out of date			EPP to be updated			0	0.000	0	0			Programmed for 2006/7	
							Ō	0.000	0	0			9	
2		M	C601/01		BLOEMHOEK DAM	3						Υ		5
	Spillway			None			2000	0.049	2140	0.6	284.2		Adequate	
	Structure			Adequate			500	0.181	2140	0.6			Adequate	
				·			0	0.000	0	0)		•	
							0	0.000	0	0)			
3		W	A210/01		ROODEKOPJES DAM	3						N		5
	Spillway			None			2000	0.049	500	0.7	271.6		Adequate	
	Structure			None			2000	0.049	900	0.7			Adequate	
	No O&MM and EPP	•		Revise existing O&	MM and compile EPP		0	0.000	0	0)		Programmed for 2007/8	
	Spillway gate malfur	nction		*Investigate			200	0.394	900	0.7			Ongoing	
4		W	N230/01		DARLINGTON DAM (LAKE M	E 3						Υ		5
	Spillway			*Investigate and im	prove		200	0.394	608	0.9	231.9		Programmed for 2010/1 & 2011/2	
	Structure - stability			None			2000	0.049	608	0.9			Adequate	
							0	0.000	0	0)			
							0	0.000	0	0)			
5		W	W440/01		PONGOLAPOORT DAM	3						N		5
	Spillway Capacity			Investigate further.0	Operate at reduced FSC(66%).		5000	0.020	6600	0.7			Programmed for 2009	
	Structural Stability			Investigate			5000	0.020	6600	0.7			Programmed for 2010	
								0.000						
								0.000						
6		M	B100/04		WITBANK DAM	3						Υ		5
	Spillway				nprove (gated spillway)		200	0.394	350	1			Programmed for?	
	Structure				cking should be monitored. Con	crete cc	1000	0.095	350	1			Programmed for?	
	Poor O&MM			Improve O&MM			1000	0.095	350	1			Programmed for?	
								0.000						
7		W	C801/10		STERKFONTEIN	3						Υ		5
	Spillway			None except correct	•		2000	0.049	2500	0.5			Adequate	
	Structure - filters no				nent monitoring and EP		5000	0.020	5000	0.5			Adequate	
	Material parameters	not fully kn	nown	Investigate further (design report)		5000	0.020	5000	0.5			Programmed for 2010	
_						_	0	0.000	0	0)			_
8	0 ""	M	B100/13		MIDDELBURG DAM	3		0.000			407.0	Υ		5
	Spillway				(overtopping spillway)		3000	0.033	6000	0.5			Ongoing	
	Structure			None except when	overtopping		10000	0.010	6000	0.5			Adequate	
							0	0.000	0	0				
			1 1000 100			_	0	0.000	0	0)			_
9	0 ""	W	H800/03		DUIVENHOKS	3	0000	0.040	400		100.0	Υ		5
	Spillway capacity			None necessary	"" (b) O(ab)" a la fi ala (asa)		2000	0.049	100	1			Adequate	
	Structural stability			(a) Investigate stab	ility.(b) Stabilize left abutment		100	0.634	200	1			Programmed for 2007 to 2011	
10		W	C300/02		WENTZEL DAM	2						N		5
	Spillway			*Detailed investigat	ion and improve		133	0.530	312	0.7	125.5		Programmed for 2007/8 & 2008/9	
	Structure			None, but monitoring	•		1000	0.095	312	0.7			Adequate	
	No O&MM and EPP	•		Compile			0	0.000	0	0)		Programmed for 2008/9	

No.	S Major risk aspe	ector ect	Loc. No.	Action to be tal	Name of dam ken	Categ	ory T(years)	PF	Щ	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
11	Spillway Structure No O&MMand EPP	W	R101/01	*Investigate and important None Compile	CATA DAM rove	3	500 2000 0	0.181 0.049 0.000	750 750 0	0.7 0.7 0)	N	Programmed for 2007/8 & 2008/9 Adequate Programmed for 2008	5
12	Spillway Structure	W	J330/01	* Increase spillway c * Improve structural a		3	0 111 200 0	0.000 0.595 0.394 0.000	100 200 0	0.8 1 0	96.5	Y	Programmed for 2009/10 Programmed for 2009/10	5
13	Spillway Structure No O&MM and EPP	W	B310/05	Investigate further Do survey of saddle Compile	RHENOSTERKOP DAM dam	3	0 5000 10000 0	0.000 0.020 0.010 0.000 0.000	4000 4000 0	0.7 0.7 0	82.8	N	Adequate Programmed for 3/97. Outstanding Programmed for 3/98. Outstanding	
14	Spillway Structure	M	M100/01	None None	GROENDAL DAM	3	2000 2000	0.049 0.049 0.000 0.000	1000 1000	0.7 0.7		Υ	Adequate Adequate	5
15	Spillway Structure - foundation Erosion emergency s		U200/04	None RF Foundation jointe *Investigate erosion	INANDA DAM d with weathering of joints protection	3	10000 8000 1000	0.010 0.012 0.095 0.000	1000 1000 1000	0.5 0.5 0.5		Y	Adequate Adequate Programmed for 2007/8	5
16	Spillway Structure	W	C120/01	None None	VAAL DAM	3	2000 10000	0.049 0.010 0.000 0.000	1600 1600	0.6 0.6		Y	Adequate Adequate	5
17	Spillway Structure	W	C520/02	None None	KRUCERSDRIFT	3	2000 2000	0.049 0.049 0.000 0.000	930 930	0.6 0.6		Y	Adequate Adequate	5
18	Spillway Capacity Structural Stability Piping	Α	G401/AM	None necessary * Repair cracking Permanent monitorin	SPICENKOP g	3	10000 50 50 0	0.010 0.867 0.867 0.000	20 40 60 0	0.8 0.9 1		Y	Adequate Programmed for?	5
19	Spillway Structure	W	U200/01	* Improve the spillwa Monitor seepage	ALBERTFALLS DAM y capacity	3	1500 5000	0.065 0.020 0.000 0.000	1200 1200	0.5 0.5		Y	Programmed for 2007/8 Adequate	6
20	Spillway Structure No O&MM and EPP Spillway gate operation	W on (human e	E100/02 error)	None Rehabilitation Compile and improve Remove spillway gat		3	10000 1000 0 100	0.010 0.095 0.000 0.634	76 76 0 76	0.8 0.8 0 0.8)	Y	Adequate Programmed for 2006/7 to 2008/9 Programmed for ???? Programmed for 2006	6

No.	S Major risk aspe	ector ect	Loc. No.	Action to be ta	Name of dam ken	Categ	ory T(years)	PF	LL	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
21	Spillway Structure No O&MM and EPF	W	A300/03	*Improve spillway None, except monit Compile	KLEIN MARICOPOORT DAM oring	1 3	500 1000 0	0.181 0.095 0.000	126 206 0	1) 	N	Programmed for 2007/8 & 2008/9 Adequate Programmed for 2007/8	6
22	Spillway Structure	W	R300/01	None None	NAHOON DAM	3	0 2000 1000 0	0.000 0.049 0.095 0.000	400 400 0	0.7 0.7	39.0	Υ	Adequate Adequate	6
23	Spillway Structure	W	C520/04	None None	MOUTLOATSISETLOGELO (3	5000 10000	0.000 0.000 0.020 0.010	1870 1870	0.7 0.7	38.7	Y	Adequate Adequate	6
24	Spillway	S	X103/50		MBAMBISO DAM-WAS BOSI pillway discharge capacity.	3	5000	0.000 0.000 0.020	40	3		Y	Adequate	6
25	Structure	ply pressure W	pipeline on da	Maintenance must I	be done.	1 3	5000 50 0	0.020 0.867 0.000	40 40 0	1	 	N	Adequate Programmed for?	6
20	Spillway capacity Structural stability	**	B250/01	Inspect apron area Carry out FEA		. 0	10000 10000	0.010 0.010 0.000 0.000	1740 1740	1			Programmed for? Programmed for?	C
26	Spillway Capacity Structural Stability O & MIM	W	R101/03	* Improve	MNYAMENI DAM	3	200 0 0	0.394 0.000 0.000	80 0 0	1)			6
27	Spillway capacity Structural capacity	W	C230/04	Low due to poor ma	BOSKOP DAM aintenance + sinkholes.	3	0 2000 2000	0.000 0.049 0.049	0 519 519	0.6 0.6	3 29.6	Y	Adequate Adequate	6
28	Spillway Capacity	В	X100/22	None	DRIEKOPPIES DAM	3	10000	0.000 0.000 0.010	2000	0.5	5 29.6	Y	Adequate	6
29	Structural Stability -	piping poter	ntial B800/01	Monitoring	TZANEEN DAM (FANIEBOTI	- 3	5000 0 0	0.020 0.000 0.000	2000 0 0	0.5 ()	Y	Adequate	6
	Spillway Structure	·		None Improved monitorin		_	10000 5000	0.010 0.020 0.000 0.000	2000 2000	0.5 0.5		-	Adequate Adequate	-
30	Spillway capacity: C Structural stability	W Cavities bene	B402/35 eath spillway cr	Improve spillwal aga Monitoring essentia		3	50 2000	0.867 0.049 0.000	30 30	1		Y	Programmed for? Adequate	6

No.	S Major risk asp	Sector ect	Loc. No.	Name of Action to be taken	dam Categ	gory T(years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
31	Spillway Structure	W	A210/02	HARTBEES Routed flood that can be handle None	SPOORT DAM 3 d by channel before overl	1000 10000 0	0.095 0.010 0.000 0.000	323 323 0	0.7 0.7 0		N	Programmed for? Adequate	6
32	Spillway Capacity Structural Stability O & MM	М	D200/18	SMITHFIEL	D DAM 3	200 0 0 0	0.394 0.000 0.000 0.000	60 0 0	0.9 0 0				6
33	Spillway capacity Structural stability	М	A600/06	DONKERP Investigate + improve Investigate	OORT DAM 3	200 2000 0 0	0.394 0.049 0.000 0.000	100 100 0	0.5 0.5 0	21.2	Y	Programmed for? Programme for?	6
34	Spillway Structure Potential clogging o	W of shaft spill	B800/02 way.	EBENEZEF *Investigate further. *Install safe seepage monitoring *Install structure to prevent clog	g system.	200 1000 50	0.394 0.095 0.867 0.000	43 43 43	0.5 0.5 0.5	20.6	N	Programmed for? Programmed for? Programmed for?	6
35	Spillway Structure	W	A601/42	VAALKOP! *Improve *Improve	NO.II-DAM 2	100 20	0.634 0.994 0.000 0.000	20 20	1 1		N	Programmed for? Programmed for?	7
36	Spillway Structure	W	A900/03	ALBASINI I Must be improved. Post-stressed cables must be m		500 5000 0	0.181 0.020 0.000 0.000	100 100 0	1 1 0		N	Programmed for 2012 Programmed for?	7
37	Spillway capacity Structural stability	М	S300/10	BONGOLO	DAM 3	2000 100000 0 0	0.049 0.001 0.000 0.000	600 600 0	0.6 0.6 0		Y	Adequate Adequate	7
38	Spillway capacity . Structure stability. Lack of maintenance	M ce.	C212/44	MIDDLE LA	KE 2	150 1000 100 0	0.488 0.095 0.634 0.000	20 20 20 20	1 1 1 0	17.2	Y		7
39	Spillway Structure	Α	A220/02	OLIFANTS None None	NEK DAM 3	2000 2000 0 0	0.049 0.049 0.000 0.000	292 292 0 0	0.6 0.6 0		Y	Adequate Adequate	7
40	Spillway Structure No O&MM and EPF	W	S302/35	SHILOH DA None None Compile	AM-CISKEI 3	2000 2000 0	0.049 0.049 0.000	250 250 0	0.7 0.7 0	16.7	N	Adequate Adequate Programmed for 2007/8	7

No.	S Major risk asp	Sector ect	Loc. No.	Name of dam Action to be taken	Categ	ory T(years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
41	Spillway Structure	Α	J250/02	CALITZDORP DAM None necessary Investigate stability	3	2000 500 0	0.049 0.181 0.000	50 100 0	8.0 8.0 0	;	Υ	Adequate Programmed for?	7
42		W	H300/02	PIETERSFONTEIN DAM	3	0	0.000	0	Ć		Υ		7
	Spillway Structure			None necessary None necessary		1000 10000	0.095 0.010 0.000 0.000	210 280	0.7 0.7			Adequate Adequate	
43		W	S300/16	THRIFT DAM (MOUNTHO	PE 2						Υ		7
	Spillway Structure			Investigate and improve None		500 10000	0.181 0.010 0.000	100 100	8.0 8.0			Outstanding Adequate	
						0	0.000	0	()			
44		W	J250/01	GAMKAPOORT DAM	3						Υ		7
	Spillway			None		10000	0.010	300	0.8			Adequate	
	Structure			None		3333	0.030	543	9.0			Adequate	
						0	0.000	0	(
45		0	X201/68	NGODWANA DAM	3	0	0.000	0	()	N		7
45	Spillway	U	A20 1/00	Adequate, but erosion should be monitored	3	10000	0.010	1000	0.5	14.8	IN	Adequate	1
	Structure			Adequate, but monitoring essential		5000	0.020	1000	0.5			Adequate	
				, adquate, set the item is edecited		0	0.000	0	(, moderno	
						0	0.000	0	()			
46		M	G100/13	WEMMERSHOEK	3						N		7
	Spillway			None		18182	0.005	2000	0.7			Adequate	
	Structure			None		10000	0.010 0.000 0.000	1000	0.7	•		Adequate	
47		W	J340/02	KAMMANASSIE	3						Υ		7
	Spillway			None		1000	0.095	30	0.7			Adequate	
	Structure			* Unblock/ clean pressure relief holes		200	0.394 0.000 0.000	50	0.7	•			
48		M	U401/08	LAKE MERTHLEV	2						Ν		7
	Spillway			Investigate & wall stability		1000	0.095	21	1			Programmed for ???	
	Structure			* Investigate integrity of post stressed bables		100	0.634	21	1			Programmed for ???	
						0	0.000	0	(
40			1 1000/04	DOODT HEGIT OOF DAN		0	0.000	0	()			_
49	Spillway Capacity	W	H300/01	POORTJIESKLOOF DAV	3	1000	0.005	40	0.6	12.5	Υ		7
	Structural Stability			None None		1000 2000	0.095 0.049 0.000 0.000	40 400	0.6 0.6			Adequate	
50		W	H200/07	ROODE ELSBERG DAM	3						N		7
	Spillway			None		10000	0.010	50	0.6	12.9		Adequate	
	Structure			Structural analysis & risk analysis		2000	0.049	50	0.6			Programmed for 2010	
	Internal erosion.Lea	aching sand	d from foundatio	or Monitor		200	0.394	50	0.6	i		Ongoing	

No.	Secto Major risk aspect	or Loc. No	o. Name of dam Action to be taken	Catego	ory T(years)	PF	Щ	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
51	W Spillway Structure	L300/01	BEERVLEI DAM None None	3	200 2000	0.394 0.049 0.000 0.000	41 41	0.7 0.7		N	Adequate Adequate	7
52	W Spillway Capacity Structural Stability	V700/01	WAGENDRIFT DAM Check freeboard and spillway length Install monitoring instruments	3	2000 2000	0.049 0.049 0.000 0.000	250 250	0.5 0.5		Y	Programmed for 2008 Programmed for 2008	7
53	A Spillway Capacity Structural Stability O & MM Erosion of spillway lining (PARYS DAM None None * Repair	2	500 10000 0 100	0.181 0.010 0.000 0.634	20 30 0 20	9.0 9.0 9.0 9.0	3)	Y	Adequate Adequate Programmed for 2006/7	7
54	W Spillway Capacity Structural Stability		GLENBROCK DAM * Improve None	3	100 1000	0.634 0.095 0.000 0.000	21 21	0.8 0.8	3 11.2	Y	Programmed for 2008 Programmed for 2008	7
55	W Spillway Structure No O&MM and EPP	A901/42	DAMANI DAM Adequate Adequate Compile	3	1000 1000 0	0.095 0.095 0.000 0.000	60 60 0		1 10.9 I	N	Adequate Adequate Outstanding	7
56	A Spillway capacity Structural stability	U700/11	BEAULIEU DAM Reinstate NOCL Monitoring essential	3	500 500 0	0.181 0.181 0.000 0.000	62 62 0 0			N	Programmed for? Adequate	7
57	W Spillway Structure No O&MM and EPP		NZHELE DAW(NJELE) Investigate spillway capacity None Compile	3	2000 10000 0	0.049 0.010 0.000 0.000	250 250 0	0.7 0.7	•	N	Programmed for 2007/8 Adequate Outstanding	7
58	M Spillway Structure	G204/65	DRIFTSANDS STORMWATER None None		1000 10000 0 0	0.095 0.010 0.000 0.000	106 5 0	(1 10.1 I)	Y	Adequate Adequate	7
59	A Spillway Structure No O&MM and EPP	B401/33	LEEUWKLIP DAM *Enlarge / abandon *Improve / abandon Compile	2	50 50 0	0.867 0.867 0.000 0.000	10 10 0 0	(9.8 I O	N	Programmed for 2004 Outstanding Programmed for 2004 Outstanding Programmed for 2004 Outstanding	9
60	W Spillway Structure Outletpipe O&M/Manual	B502/23	CHUNIESPOORT DAM Investigate and improve No drain - investigate dispersiveness *Investigate founding conditions Compile	2	200 200 50 0	0.394 0.394 0.867 0.000	9 9 9 0		9.8 I I	N	Programmed for 2007 - 2008 Programmed for 2007 - 2008 Programmed for 2007 - 2008 Outstanding	8

No.	S Major risk aspe	ector ect	Loc. No.	Action to be ta	Name of dam ken	Categ	gory T(years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
61	Spillway Structure	Α	C240/05	Investigate bettem None	JOHAN NESER DAM (KLERI vents	4 2	200 10000	0.394 0.010 0.000 0.000	30 30	3.0 3.0		Y	Programmed for 2007/8 Adequate	8
62	Spillway Capacity Structural Stability O & MM	M	D120/02		KLOOF DAM	3	100 0 0 0	0.634 0.000 0.000 0.000	15 0 0 0	(1 9.5))			8
63	Spillway Capacity Structural Stability O & MM	W	Q940/01	Can take RMF + no * Improve stability	KATRIVIER DAM o apron protection	3	2000 1000 0	0.049 0.095 0.000 0.000	82 82 0 0	3.0 3.0	9.1	Y	Adequate Programmed for 2012/3 & 2013/4	8
64	Spillway - radial gate Structure O&MM and EPP no		A220/07 rd	*Inadequate. Enlar None Compile O&MM ar	BOSPOORT DAM ge spillway capacity d update EPP	3	0 200 1000 0	0.394 0.095 0.000	20 20 0		1 9.0 1	Y	Programmed for 2008/9 & 2010/1 Programmed for 2008/9 & 2010/1 Programmed for 2007/8	
65	Spillway Capacity Structural Stability Piping	M	H402/66	None None Monitoring	MCGREGOR-NUWE DAM N	(2	0 10000 500 50	0.000 0.010 0.181 0.867	8 10 10			Y	Adequate Adequate Ongoing	8
66	Spillway Structure	Α	J340/08	None *Investigation to de	EZELJACHT DAM stermine "safe operating level"	3	0 100000 100 0 0	0.000 0.001 0.634 0.000	0 5 20 0 0	0.6 0.7	,)	Y	Adequate Programmed for 2006/7 & 2007/8	8
67	Spillway Structure No O&MM and EPF	W	B320/01	None *Monitoring essent Compile	LOSKOP DAM ial / Improve drainage	3	10000 5000 0	0.000 0.010 0.020 0.000 0.000	500 500 0	0.6 0.6		N	Adequate Adequate Outstanding	8
68	Spillway Structure	W	G200/12	None None	KLEINPLAAS DAM	3	1177 1818 0 0	0.081 0.054 0.000 0.000	60 120 0 0			N	Adequate Adequate	8
69	Spillway Capacity Structural Stability	M	Q800/13		BESTERSHOEK DAM	2	2000 50	0.049 0.867 0.000 0.000	10 10		1 8.7 1			8
70	Spillway capacity Structural Stability	Α	A213/52		HIPPO DAM	2	50 0 0	0.867 0.000 0.000	10 0 0	(1 8.7)	N		8

No.	S Major risk aspe	Sector ect	Loc. No.	Action to be ta	Name of dam ken	Categ	ory T(years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
71	Spillway Structure Flood control	W	C900/07	None necessary None necessary Improve skills and l	BLOEMHOF DAM knowledge during emergency (1	3 flood) s	10000 10000 1000	0.010 0.010 0.095 0.000	50 50 100	3.0 3.0 3.0	3	N	Adequate Adequate	8
72	Spillway Structure	M	S401/05	*Recently improved None	KOCH DAM I	2	20 1000 0 0	0.994 0.095 0.000 0.000	9 9 0	0.9 0.9 (9	Υ	Still need to be verified Adequate	8
73	Spillway Structure O&MM and EPP	W	C230/07	* Upgrade None	LAKESIDE DAM (POTCHEFS	2	100 10000 0 0	0.634 0.010 0.000	18 18 0	0.7 0.7 (7 8.0 7	Υ	Programmed for 2012 Adequate	8
74	Spillway Capacity Structural Stability Piping due to anima	M al burrows.	D540/01	None None * Maintenance and	VANWYKSVLEI monitoring	2	2000 1000 100	0.000 0.049 0.095 0.634	5 10 14	0.8 0.9 0.9	8.0	Y	Adequate Adequate Ongoing	8
75	Spillway capacity Structural stability Strong leak at RF	S	B800/25	Monitor erosion Monitor seepage Repair	LORNA DAWN DAM	2	0 2000 2000 50	0.000 0.049 0.049 0.867 0.000	0 9 9 9		1 7.9 1	Y	Ongoing Ongoing Programmed for?	8
76	Spillway Structure No O&MM and EPF	A	B501/17	*Investigate / impro None Compile	UPPER GOMPIES DAM we	2	50 2000 0	0.867 0.049 0.000 0.000	9 9 0		1	N	Programmed for 2007 Adequate Outstanding	8
77	Spillway Structure	W	W120/01	Erosion must be m Monitoring	GOEDERTROUW DAM onitored/repaired	3	5000 5000	0.020 0.020 0.000 0.000	400 400 0	0.5 0.5	5	Y	Adequate Adequate	8
78	Spillway Structure	W	B800/29	Investigate Further Investigate stability	MIDDELLETABA DAM of embankment and piping pol	3 ential	500 1000	0.181 0.095 0.000 0.000	30 30		1 7.8	N	Programmed for ??? Programmed for ???	8
79	Spillway Capacity Structural Stability O & MM	0	C221/70	* Investigate and in	FLEURHOF DAM	2	100000 100 0 0	0.001 0.634 0.000 0.000	12 12 0 0	(1)			8
80	Spillway Structure	M	G400/21	*Increase spillway o None	MOSSELRIVIER DAM capacity	3	500 3000 0	0.181 0.033 0.000	50 20 0	3.0 3.0)	3 7.6 3	Y	Investigation to start 6/2000 Adequate	8

No.	Sector Major risk aspect	Loc. No.	Na Action to be taken		Catego	ory T(years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
81	O Spillway Capacity Structural Stability O & MM	A215/61	EAS None None Compile	STERN PLATINUM MINE I	2	200 10000 0 0	0.394 0.010 0.000 0.000	31 6 0			N	Adequate Adequate Programmed for 2006	8
82	W Spillway Structure	L820/01	KOL None None	OUGA DAM (PAUL SAUER)	3	10000 1000	0.010 0.095 0.000 0.000	100 100	0.7 0.7		Y	Adequate Ongoing monitoring	8
83	W Spillway Structure Pipeline burried in damwall	B501/14	MAI None Monitor *Relocate / monitor	HLANGU DAM	2	2000 1000 50	0.049 0.095 0.867 0.000	8 8 8		1 7.1 1 1	N	Adequate Adequate Programmed for 2006 - 2008	8
84	W Spillway Structure No O&MM and EPP	C700/05	WEI *Investigate *Leakage along RHS pip Compile	ELTEVREDE DAM pe	2	50 50 0	0.867 0.867 0.000 0.000	9 9 0 0			N	Programmed for? Programmed for? Programmed for?	8
85	W Spillway Structure	D350/02	GAF Monitoring Monitoring	RIEP DAM (HENDRIK VEF	3	100000 100000	0.001 0.001 0.000 0.000	5000 5000	0.7 0.7		Y	Adequate Adequate	8
86	W Spillway Structure No O&MM and EPP	D310/01	VAN Monitoring Monitoring Compile	N DER KLOOF DAM (P.K.I	3	80000 80000 0	0.001 0.001 0.000 0.000	4000 4000 0	0.7 0.7		N	Adequate Adequate Programmed for 2007	8
87	W Spillway Structure No O&MM and EPP	A804/04	NVV Investigate erosion potet *Do structural and found Compile		3	2000 1000 0	0.049 0.095 0.000 0.000	50 50 0		1 7.0 1 0	N	Programmed for 2007/8 Programmed for 2007/8 Outstanding	8
88	A Spillway Structure	G200/06	None necessary None necessary	UEGUM DAM	3	5000 2000 0 0	0.020 0.049 0.000 0.000	100 200 0 0			Y	Adequate Adequate	8
89	M Spillway Structure No O&MM and EPP	C212/46	None None Compile	EINFONTEIN DAM	2	50 2000 0 0	0.867 0.049 0.000 0.000	8 2 0 0	0.6	1 6.9 6 0	N	Adequate Adequate Programmed for ???	8
90	W Spillway capacity Structura stability	B501/11	FLA None None	AG BOSHIELO DAM - WA'	3	10000 10000	0.010 0.010 0.000	500 500	0.7 0.7		Y	Adequate Adequate	8

No.	S Major risk asp	Sector ect	Loc. No.	Action to be ta	Name of dam aken	Catego	ory T(years)	PF	LL	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
91	Spillway Capacity Structural Stability	W	A210/03	None * Investigate (AAR	BUFFELSPOORT DAM + GEODETIC SURVEYS)	3	2000 200	0.049 0.394 0.000 0.000	20 20	3.0 3.0		N	Adequate	8
92	Spillway Structure	W	H200/06	None None	LAKENVALLEI DAM	3	100000 33333	0.001 0.003 0.000 0.000	2600 2600	0.68 0.68		Y	Adequate Adequate	8
93	Spillway Structure	0	A231/35	Overall estimate None	PREMIER MINE NO.7 SLIME	3	1000 0 0	0.095 0.000 0.000 0.000	70 0 0 0		1 6.7 0 0	N		8
94	Spillway Structure	Α	Q440/01	None None	LAKE ARTHUR	3	200 200	0.394 0.394 0.000 0.000	15 15	0.7 0.7	7 6.6	Y	Adequate Adequate	8
95	Spillway Capacity Structural Stability	M	H402/74	None None	DASSIESHOEK DAM	3	100000 500 0	0.001 0.181 0.000 0.000	30 40 0			Y	Adequate Adequate	8
96	Spillway Structure Retaining wall/emb	M pankment tra	E400/01 ansition.	None necessary None necessary Monitor leakage(LC	KAREE DAM 03)	3	20000 2000 200 0	0.005 0.049 0.394 0.000	12 12 20 0	0.7 0.7 8.0	7	Y	Adequate Adequate Programmed for?	8
97	Spillway capacity Structural stability	В	U202/45	None. Investigate stability	DURBAN HEIGHTS RESERV	3	5000 100 0	0.020 0.634 0.000 0.000	20 20 0	9.0 9.0	5 6.4	N	Adequate. Programmed for?	8
98	Spillway Structure Piping	M	G402/57	Increase spillway c None *Remove antworks	. ,	/ 2	200 500 100	0.394 0.181 0.634 0.000	4 9 9		1 6.4 1 1	Y	Programmed for 2006/7 Adequate Programmed for 2006/7	8
99	Spillway Structure No O&MM and EP	W P	B310/01	*Improve Monitor Compile	RUST DE WINTER DAM	3	500 5000 0	0.181 0.020 0.000 0.000	40 40 0	3.0 3.0		N	Programmed for 2006 - 2008 Adequate Outstanding	8
100	Spillway Structure	W	S702/07		XILINXA DAM to be checked by checking crest rel. Investigation recommended		1000 500	0.095 0.181 0.000	30 30	3.0 3.0		Υ	Adequate Programmed for ???	8

APPENDIX C2

													AFFLINDIA	U Z
No.		Sector	Loc. No.		Name of dam	Categ	iory					EPP		DSI Interval
	Major ris	sk aspect		Action to be ta	ken	·	T(years)	PF	LL	AL	EL(total)	(Y/N)	Status/Progress	(years)
,		М	N120/01		NQWEBA DAM (PREVIOUSL)	ı 3						Υ		5
	ı Spillway	IVI	11120/01	*Investigate further	NQVVEBA DAVI(FREVIOUSLI	. 3	100	0.633968	10	0.5	633.96766	ī	Programmed for 2007/8	5
	Structure			*Investigate further	and improve		100	0.633968	2000	0.5			Programmed for 2007/8	
	EPP out of	date		EPP to be updated	andirpove		0	0.00000	2000	0.5			Programmed for 2006/7	
	L i cata	date		L 1 to be appeared			Ö	0	0	0			riogiairii a 101 20007	
3	3	W	A210/01		ROODEKOPJES DAM	3						N		5
	Spillway			None			2000	0.048782	500	0.7	271.5749		Adequate	
	Structure			None			2000	0.048782	900	0.7			Adequate	
	No O&MM			Revise existing O&I	VIM and compile EPP		0	0	0	0			Programmed for 2007/8	
	Spillway ga	te malfunction		*Investigate			200	0.39423	900	0.7			Ongoing	
4		W	N230/01		DARLINGTON DAM (LAKE ME	3						Υ		5
	Spillway			*Investigate and imp	orove		200	0.39423	608	0.9			Programmed for 2010/1 & 2011/2	
	Structure -	stability		None			2000	0.048782	608	0.9			Adequate	
							0	0	0	0				
_	_					_	0	0	0	0				_
6		М	B100/04		WITBANK DAM	3		0.00.100	050			Υ	5 16 0	5
	Spillway				prove (gated spillway)		200	0.39423	350	1	177.68109		Programmed for?	
	Structure				cking should be monitored. Cond	rete co	1000	0.095208	350	1			Programmed for?	
	Poor O&M	VI		Improve O&MM			1000	0.095208	350	1			Programmed for?	
ç		W	H800/03		DUIVENHOKS	3		U				Υ		5
•	spillwayca		Посилоз	None necessary	DOIVENHONS	3	2000	0.048782	100	1	126.79353	ī	Adequate	5
	Structural s				lity.(b) Stabilize left abutment		100	0.633968	200	1	120.79000		Programmed for 2007/8 & 2008/9	8. 2010/1
	Suddual	stability		(a) II ivestigate stabl	ity.(b) Stabilize left about ha it		100	0.00000	200				r rogrammed for 2007/0 & 2000/9	Q2010/1
								0						
11		W	R101/01		CATA DAM	3		Ü				N		5
•	Spillway			*Investigate and im		Ū	500	0.181433	750	0.7	116.21658	••	Programmed for 2007/8 & 2008/9	
	Structure			None			2000	0.048782	750	0.7			Adequate	
	No O&MM	and EPP		Compile			0	0	0	0	ı		Programmed for 2008	
				•			0	0	0	0	ı		G	
12	2	W	J330/01		STOMPDRIFT DAM	3						Υ		5
	Spillway			* Increase spillway	capacity		111	0.595451	100	0.8	96.481485		Programmed for 2009/10	
	Structure			* Improve structural	adequacy		200	0.39423	200	1			Programmed for 2009/10	
							0	0	0	0				
							0	0	0	0	1			
15		W	U200/04		INANDA DAM	3						Υ		5
	Spillway			None			10000		1000	0.5			Adequate	
	Structure -				ed with weathering of joints		8000	0.012423	1000	0.5			Adequate	
	Erosion em	nergency spillway		*Investigate erosion	protection		1000	0.095208	1000	0.5			Programmed for 2007/8	
40		^	0404/484		CDIODA IVOD	•		0				V		_
18		A	G401/AM	None management	SPIOENKOP	3	10000	0.0000E1	20	0.0	52.042827	Υ	Adam rata	5
	Spillway Ca Structural S			None necessary * Repair cracking			10000 50	0.009951 0.86738	20 40	0.8 0.9			Adequate Programmed for?	
		Stability		Permanent monitori	ing		50	0.86738	60	0.9			riogianneulo?	
	Piping			ramananimonilon	u g		0		0	0				
20)	W	E100/02		CLANMILLIAM DAM	3	U	U	U	U	,	Υ		6
20	Spillway	• •	L100/02	None	C TAN VILLI ANI DAM	3	10000	0.009951	76	0.8	40.827911	•	Adequate	O
	Structure			Rehabilitation			1000	0.005501	76 76	0.8			Inadequate.Programmed for 2006	/7 to 2008/9
	No O&MM	and EPP		Compile and improv	ne EPP		0	0.000200	0	0.0			Programmed for ???	
		ate operation (humar	n error)	Remove spillway ga				0.633968	76	0.8			Programmed for 2006	
	. , ,			, , , , ,									-	

No.	Major risi	Sector k aspect	Loc. No.	Action to be ta	Name of dam ken	Catego	ory T(years)	PF	Щ	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
24	Spillway Structure	S ater supply pressure	X103/50 pipeline on dar	Confirm/ analyse s Maintenance must n Investigate and relo		3	5000 5000 50 0	0.019803 0.019803 0.86738 0	40 40 40 0	1 1 1 0	34.916848	Y	Adequate Adequate Programmed for?	6
26	Spillway Cap Structural S O & MM		R101/03	* Improve	MNYAMENI DAM	3	200 0 0	0.39423 0 0 0	80 0 0	1 0 0				6
30			B402/35 ath spillway cre	: Improve spillwal ag Monitoring essentia		3	50 2000	0.86738 0.048782 0	30 30	1		Y	Programmed for? Adequate	6
32	Spillway Cap Structural S O & MM		D200/18		SMITHFIELD DAM	3	200 0 0 0	0.39423 0 0 0	60 0 0	0.9 0 0				6
33	Spillway cap Structural st		A600/06	Investigate + impro Investigate	DONKERPOORT DAM ve	3	200 2000 0 0	0.39423 0.048782 0 0	100 100 0 0	0.5 0.5 0 0	21.189027	Y	Programmed for? Programme for?	6
34	Spillway Structure	W ogging of shaft spillw	B800/02 /ay.	*Investigate further *Install safe seepaç *Install structure to	ge monitoring system.	3	200 1000 50	0.39423 0.095208 0.86738 0	43 43 43	0.5 0.5 0.5		N	Programmed for? Programmed for? Programmed for?	6
35	Spillway Structure	W	A601/42	*Improve *Improve	VAALKOP NO.II-DAM	2	100 20	0.633968 0.994079 0	20 20	1		N	Programmed for? Programmed for?	7
36	Spillway Structure	W	A900/03	Must be improved. Post-stressed cable	ALBASINI DAM es must be monitored,investigat	3 ed.	500 5000 0	0.181433 0.019803 0	100 100 0	1 1 0	19.764351	N	Programmed for 2012 Programmed for?	7
38	Spillway cap Structure sta Lack of mail	ability.	C212/44		MIDDLE LAKE	2	1000	0.487728 0.095208 0.633968 0	20 20 20 0	1 1 1 0	17.195652	Y		7
41	Spillway Structure	Α	J250/02	None necessary Investigate stability	CALITZDORP DAM	3	2000 500 0	0.048782 0.181433 0	50 100 0	0.8 0.8 0	15.832912	Y	Adequate Programmed for?	7

No.	Major ris	Sector k aspect	Loc. No.	Name Action to be taken	e of dam	Catego	ory T(years)	PF	LL	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
48	Spillway Structure	М	U401/08	LAKE I Investigate & wall stability * Investigate integrity of pos	MERTHLEV st stressed bables	2	1000 100 0 0	0.095208 0.633968 0	21 21 0 0	1 1 0 0	14.045153	N	Programmed for ??? Programmed for ???	7
53	Spillway Ca Structural S O & MM		G101/AH	PARYS None None * Repair	S DAM	2	500 10000 0 100	0.181433 0.009951 0 0.633968	20 30 0 20	0.8 0.8 0 0.8	11.303168	Y	Adequate Adequate Programmed for 2006/7	7
56		A pacity	U700/11		LIEU DAM	3	500 500 0	0.181433 0.181433 0 0	62 62 0	0.5 0.5 0	10.2284	N	Programmed for? Adequate	7
59	Spillway Structure No O&MM a	A and EPP	B401/33	LEEUV *Enlarge / abandon *Improve / abandon Compile	WKLIP DAM	2	50 50 0	0.86738 0.86738 0	10 10 0 0	1 1 0 0	9.8241205	N	Programmed for 2004 Outstandir Programmed for 2004 Outstandir Programmed for 2004 Outstandir	ng
60	Spillway Structure Outletpipe O&M Manua	W	B502/23	CHUNI Investigate and improve No drain - investigate dispe *Investigate founding condi Compile		2	200 200 50 0	0.39423 0.39423 0.86738 0	9 9 9 0	1 1 1 0	9.7752585	N	Programmed for 2007 - 2008 Programmed for 2007 - 2008 Programmed for 2007 - 2008 Outstanding	8
62		M pacity	D120/02		= DAM	3	100 0 0	0.633968 0 0	15 0 0	1 0 0	9.5095149		January G	8
63	Spillway Ca Structural S O & MM		Q940/01	KATRI' Can take RMF + no apron p * Improve stability	VIER DAM protection	3	2000 1000 0	0.048782 0.095208 0	82 82 0	0.8 0.8 0	9.1410877	Υ	Adequate Programmed for 2012/3 & 2013/4	8
65	Spillway Ca Structural S Piping		H402/66	MCGR None None Monitoring	EGOR-NUWE DAM N	1 2	10000 500 50 0	0.009951 0.181433 0.86738 0	8 10 10 0	1 1 1 0	8.9240761	Y	Adequate Adequate Ongoing	8
66	Spillway Structure	A	J340/08	EZELJ. None *Investigation to determine	ACHT DAM "safe operating level"	3	100000 100 0	0.001 0.633968 0	5 20 0	0.6 0.7 0	8.8755472	Y	Adequate Programmed for 2006/7 & 2007/8	8
69	Spillway Ca Structural S		Q800/13	BESTE	ERSHOEK DAM	2	2000 50	0.048782 0.86738 0	10 10	1				8

No.	Major ris	Sector sk aspect	Loc. No.	Action to be tak	Name of dam ken	Categ	ory T(years)	PF	LL	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
	Spillway ca _l Structural S		A213/52	ı	HIPPO DAM	2	50 0 0	0.86738 0 0	10 0 0	1 0 0	8.6738044	N		8
	Spillway Structure	М	S401/05	*Recently improved None	KOCH DAM	2	1000	0 0.994079 0.095208 0	9 9 0	0.9	8.0566095	Y	Still need to be verified Adequate	8
	Spillway Ca Structural S		D540/01	None None * Maintenance and n	VANWYKSVLEI nonitoring	2	1000 100	0.048782 0.095208 0.633968	5 10 14	0.8 0.9 0.9	7.993705	Y	Adequate Adequate Ongoing	8
	Spillway ca Structural s Strong leak	tability	B800/25	I Monitor erosion Monitor seepage Repair	LORNA DAWN DAM	2		0.048782 0.048782 0.86738	9 9 9	0 1 1 1		Y	Ongoing Ongoing Programmed for?	8
	Spillway Structure No O&MM :		B501/17	*Investigate / improv None Compile	UPPER GOMPIES DAM e	2	50 2000 0	0.86738 0.048782 0	9 9 0	1 1 0	7.8646496	N	Programmed for 2007 Adequate Outstanding	8
	Spillway Structure	W	B800/29	Investigate Further	MIDDELLETABA DAM of embankment and piping pol	3 tential		0.181433 0.095208 0	30 30	1	7.7810155	N	Programmed for ??? Programmed for ???	8
	Spillway Ca Structural S O & MM		C221/70	* Investigate and imp	FLEURHOF DAM prove	2	100000 100 0	0.001 0.633968 0	12 12 0 0	1 1 0 0	7.6120021			8
	Spillway Structure	M	G400/21	*Increase spillway ca None	MOSSELRIVIER DAM apacity	3	500	0.181433 0.032789 0	50 20 0		7.5658475	Υ	Investigation to start 6/2000 Adequate	8
	Spillway Structure	W mied in damwall	B501/14	None Monitor *Relocate / monitor	MAHLANGU DAM	2	_	0.048782 0.095208 0.86738	8 8 8			N	Adequate Adequate Programmed for 2006 - 2008	8
	Spillway Structure No O&MM :	W and EPP	C700/05	*Investigate *Leakage along RHS Compile	WELTEVREDE DAM 6 pipe	2	50 50 0	0.86738 0.86738 0	9 9 0	0.8 0.8 0	7.0733668	N	Programmed for? Programmed for? Programmed for?	8

No.	Vlajor ris	Sector sk aspect	Loc. No.	Action to be to	Name of dam aken	Cate	gory T(years)	PF	LL	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
93 S	Spillway Structure No O&MM Spillway Structure	M and EPP O	C212/46 A231/35	None None Compile Overall estimate None	KLEINFONTEIN DAM PREMIER MINE NO.7 SLIME	2	50 2000 0 0	0.048782 0 0	70	8 1 2 0.6 0 0 0 1) 6.6645497 	N	Adequate Adequate Programmed for ???	8
5	Spillway Structure Retaining v	M wall/embankment tra	E400/01 ansition.	None necessary None necessary Monitor leakage(L0	KAREE DAM 03)	3	20000 2000 2000 200	0.004988 0.048782 0.39423	1: 1: 2:	0 0 2 0.7 2 0.7) 7 6.4387371 7	Y	Adequate Adequate Programmed for?	8
5	Spillway Structure Piping	M	G402/57	Increase spillway o None *Remove antworks		v 2	200 500 100	0.39423 0.181433 0.633968 0		4 1 9 1 9 1	6.3669176	Υ	Programmed for 2006/7 Adequate Programmed for 2006/7	8
	Spillway Structure	W	S702/07		XILINXA DAM to be checked by checking cres vel. Investigation recommender		1000 500		3i 3i		3 6.2248124 3	Y	Adequate Programmed for ???	8

APPENDIX C3

No.	Major risk	Sector k aspect	Loc. No.	Name o Action to be taken	f dam	Catego 7	ry (years)	PF	Щ	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
3	3	W	A210/01	ROODEK	OPJES DAM	3						N		5
	Spillway			None			2000	0.048782	500	0.7	271.5749		Adequate	
	Structure			None			2000	0.048782	900	0.7			Adequate	
	No O&MMa			Revise existing O&MM and con	npile EPP		0	0	0	0			Programmed for 2007/8	
		e malfunction		*Investigate			200	0.39423	900	0.7			Ongoing	
2		W	N230/01		TON DAM (LAKE M	3						Υ		5
	Spillway			*Investigate and improve			200	0.39423	608	0.9	231.89271		Programmed for 2010/1 & 2011/2	
	Structure - st	tability		None			2000	0.048782	608	0.9			Adequate	
							0	0	0 0	0				
ç	,	W	H800/03	DUIVENH	nve	3	U	U	U	U		Υ		5
	, Spillway cap:		1 100000	None necessary	ONO .	3	2000	0.048782	100	1		•	Adequate	3
	Structural sta			(a) Investigate stability.(b) Stab	ilize left ahutment			0.633968	200	1	120.73000		Programmed for 2007/8 to 2010/1	
		asinty		(a) ii ivooligato otoomiy.(b) otoo	inizo fore abadi Fibrit		100	0.000000	200				1.10g/a111.2016 20070 to 2016 1	
								Ö						
11		W	R101/01	CATA DA	M	3						N		5
	Spillway			*Investigate and improve			500	0.181433	750	0.7	116.21658		Programmed for 2007/8 & 2008/9	
	Structure			None			2000	0.048782	750	0.7			Adequate	
	No O&MMa	nd EPP		Compile			0	0	0	0			Programmed for 2008	
							0	0	0	0				
12		W	J330/01		RIFT DAM	3						Υ		5
	Spillway			* Increase spillway capacity				0.595451	100	0.8	96.481485		Programmed for 2009/10	
	Structure			* Improve structural adequacy			200	0.39423	200	1			Programmed for 2009/10	
							0	0	0 0	0				
15		W	U200/04	INANDA [2014	3	U	U	U	U		Υ		5
ıc	Spillway	VV	0200/04	None	JHIVI	3	10000	0.009951	1000	0.5		ī	Adequate	5
	Structure - fo	n indation		RF Foundation jointed with wea	thering of joints		8000	0.012423	1000	0.5	37.073031		Adequate	
		rgency spillway		*Investigate erosion protection				0.095208	1000	0.5			Programmed for 2007/8	
	_ 00.0	.go.io, opria,		vocagato a color. protectio.				0	.000	0.0				
20)	W	E100/02	CLANML	LIAMDAM	3						Υ		6
	Spillway			None			10000	0.009951	76	0.8	40.827911		Adequate	
	Structure			Rehabilitation			1000	0.095208	76	0.8			Inadequate. Programmed for 2006	77 to 2008/9
	No O&MMa	nd EPP		Compile and improve EPP			0	0	0	0			Programmed for ???	
		e operation (human		Remove spillway gates - rehabi			100	0.633968	76	0.8			Programmed for 2006	
26	•	W	R101/03	MNYAME	NI DAM	3								6
	Spillway Cap	,		* Improve			200	0.39423	80	1				
	Structural Sta	ability					0	0	0	0				
	O&MM						0	0	0	0				
30	1	W	B402/35	DER BRO	YHEN	3	U	U	U	U		Υ		6
				יא בי אום אום s Improve spillwal against erosion		3	50	0.86738	30	1		•	Programmed for?	O
	Structural sta		au i spiliway a c	Monitoring essential			2000	0.048782	30	1	20.210-00		Adequate	
				.v.z. morning cooci ma				0.0.0.0	33	•			, moderne	
								0						
34	ļ	W	B800/02	EBENEZE	ER DAM	3						N		6
	Spillway			*Investigate further.			200	0.39423	43	0.5	20.637157		Programmed for?	
	Structure			*Install safe seepage monitoring			1000	0.095208	43	0.5			Programmed for?	
	Potential do	gging of shaft spillv	æy.	*Install structure to prevent dog	gging.		50	0.86738	43	0.5			Programmed for?	

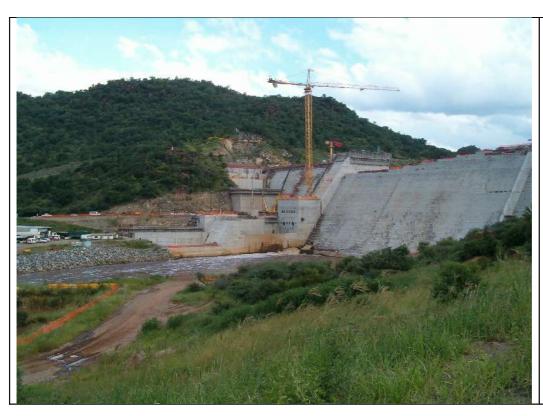
No. Ma	Sector ajor risk aspect	Loc. No.	Name of dam Action to be taken	Catego 7	ry (years)	PF	Ш	AL	EL(total)	EPP (Y/N)	Status/Progress	DSI Interval (years)
	W illway ructure	A601/42	VAALKOP NO.II-DAM *Improve *Improve	2	100 20	0.633968 0.994079 0	20 20	1	19.956658	N	Programmed for? Programmed for?	7
	W illway ructure	A900/03	ALBASINI DAM Must be improved. Post-stressed cables must be monitored,investigations.	3 ated.	500 5000 0	0.181433 0.019803 0	100 100 0	1 1 0	19.764351	N	Programmed for 2012 Programmed for?	7
Str Ou	W illway ucture itletpipe kM Manual	B502/23	CHUNIESPOORT DAM Investigate and improve No drain - investigate dispersiveness *Investigate founding conditions Compile	2	200 200 50 0	0.39423 0.39423 0.86738	9 9 9	1 1 1 0	9.7752585	N	Programmed for 2007 - 2008 Programmed for 2007 - 2008 Programmed for 2007 - 2008 Outstanding	8
63 Spi Stri	W illway Capacity ructural Stability & MM	Q940/01	KATRIVIER DAM Can take RMF + no apron protection * Improve stability	3	2000 1000 0	0.048782 0.095208 0	82 82 0	0.8 0.8 0	9.1410877	Y	Adequate Programmed for 2012/3 & 2013/	8
	W iillway ructure	B800/29	MIDDELLETABA DAM Investigate Further Investigate stability of embankment and piping po	3 otential	500 1000	0.181433 0.095208 0	30 30	1		N	Programmed for ??? Programmed for ???	8
Str	W illway ucture veline burried in damwall	B501/14	MAHLANGU DAM None Monitor *Relocate / monitor	2	2000 1000 50	0.048782 0.095208 0.86738	8 8 8	1 1 1	7.1191116	N	Adequate Adequate Programmed for 2006 - 2008	8
Str	W illway ucture o O&MM and EPP	C700/05	WELTEVREDE DAM *Investigate *Leakage along RHS pipe Compile	2	50 50 0	0.86738 0.86738 0	9 9 0	0.8 0.8 0	7.0733668	N	Programmed for? Programmed for? Programmed for?	8
	W illway ucture	S702/07	XILINXA DAM Spillway capacity to be checked by checking cres *Repair NOC to level. Investigation recommender		1000 500	0.095208	30 30	0.8 0.8		Y	Adequate Programmed for ???	8

APPENDIX D: PHOTOGRAPHS OF SELECTED DAMS

De Hoop Dam near Steelpoort, Limpopo (DWA)

New dam under construction, January 2012.

View of upstream face with inlet block in foreground.


A weak concrete layer was discovered just above the earthfill berm in the centre of the picture and the extent of this was being investigated.

De Hoop Dam near Steelpoort, Limpopo (DWA)

Another view of inlet block and right flank, January 2012.

The major portion of this concrete gravity dam consists of roller compacted concrete (RCC).

De Hoop Dam near Steelpoort, Limpopo (DWA)

Downstream view, January 2012.

Steelpoort River runs in centre of picture through temporary river diversion conduit.

De Hoop Dam near Steelpoort, Limpopo (DWA)

Block on the right flank being prepared for placing of RCC (roller compacted concrete).

Goxhill Dam near Himeville in KZN. (Pholela Irrigation Board)

Overview of new dam (almost complete) on the Pholela River near Himeville, September 2011.

Right bank bywash spillway visible in background.

Goxhill Dam

Upstream entrance of low flow service spillway. Entrance to be cleared of rubble.

Goxhill Dam

Downstream reinforced concrete chute of low flow service spillway, September 2011.

The downstream end of the chute must be completed as soon as the water level has been drawn down.

Goxhill Dam

Bywash spillway on the right bank. This spillway and downstream channel was provided with reinforced concrete ground beams (not visible in picture) to combat erosion.

(There is another bywash spillway on the left bank, not shown).

Mhlabatsane Dam near Highflats, KZN.

(Umgeni Water)

New dam under construction,
September 2011.
Left flank foundation for earthfill wall visible in background.

Picture shows left and right gravity retaining walls with concrete spillway between them (not visible). Note inlet tower within right flank retaining wall in foreground.

Mhlabatsane Dam

Note labyrinth spillway structure on top of gravity wall, between left and right gravity retaining walls (looking downstream).

Mhlabatsane Dam

Closer view of inlet tower, with the outlet pipes running through the right flank retaining wall.

Note upstream sluice gates on inlet tower.

Ludeke Dam near Bizana, KZN (Umgeni Water)

New dam under construction, March 2012.

View of right flank, showing upstream and downstream rockfill zones and central clay core.

Ludeke Dam

Close-up of chimney filters downstream of clay core, March 2012.

Bridge to inlet tower visible on LHS and side-channel spillway visible in background.

Ludeke Dam

Looking upstream towards inlet tower, with outlet conduit on RHS and temporary river diversion channel in centre of picture, March 2012.

Ludeke Dam

Downstream end of outlet conduit.

Hood for sleeve valve being installed.

Ludeke Dam

Spillway chute under construction on left flank.

Side-walls are anchored by soil nails into weathered rock.

Ludeke Dam

Close-up of soil nails.

Ludeke Dam

Spillway channel and chute will be concrete lined. Base of spillway walls is first gunited and anchored by soil nails.

Note provision for underdrains.

Ludeke Dam

Side-channel spillway under construction. Ogee on LHS, March 2012..